Series HFG1E/C

SET-2

Q.P. Code ${f 56/C/2}$ प्रश्न-पत्र कोड

Roll				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

रसायन विज्ञान (सैद्धान्तिक) **CHEMISTRY** (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पुर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 23 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **35** questions.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

56/C/2

\(\hat{\phi}\hat

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **क. ख. ग. घ** एवं **ङ** ।
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के **दो-दो** अंकों के प्रश्न हैं ।
- (v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।

 $18 \times 1 = 18$

- 1. X और Y दो वैद्युत-अपघट्यों के विलयनों का तनुकरण किया गया । X की मोलर चालकता 25 गुना बढ़ गई जबकि Y की 1.5 गुना । कौन-सा प्रबलतर वैद्युत-अपघट्य है ?
 - (a) X
 - (b) Y
 - (c) X और Y दोनों
 - (d) उपर्युक्त में से कोई नहीं
- **2.** संकुल $[C_0(NH_3)_4(H_2O)_2]Cl_3$ में केन्द्रीय धातु परमाणु की ऑक्सीकरण अवस्था है :
 - (a) +2

(b) + 3

(c) + 1

(d) + 4

56/C/2

General Instructions:

Read the following instructions carefully and strictly follow them:

- (i) This question paper contains **35** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into **five** Sections **A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. **1** to **18** are Multiple Choice (MCQ) type questions, carrying **1** mark each.
- (iv) In **Section B** Questions no. **19** to **25** Very Short Answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section** C Questions no. **26** to **30** are Short Answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D** Questions no. **31** and **32** are case-based questions carrying **4** marks each.
- (vii) In **Section E** Questions no. **33** to **35** are Long Answer (LA) type questions carrying **5** marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. 18×1=18

- 1. Solutions of two electrolytes X and Y are diluted. Molar conductivity of X increases 25 times whereas that of Y increases 1.5 times. Which one is a stronger electrolyte?
 - (a) X
 - (b) Y
 - (c) Both X and Y
 - (d) None of the above
- 2. Oxidation state of central metal atom in the given complex is : $[\mathrm{Co(NH_3)_4(H_2O)_2}]\mathrm{Cl_3}$
 - (a) + 2

(b) + 3

(c) + 1

(d) + 4

56/C/2

>

3. पेन्टेन-2-ओन और पेन्टेन-3-ओन में निम्नलिखित में से किसके द्वारा विभेद किया जा सकता है ?

- (a) फेलिंग परीक्षण
- (b) सोडियम बाइकार्बोनेट परीक्षण
- (c) टॉलेंस परीक्षण
- (d) आयोडोफॉर्म परीक्षण

4. एक विशिष्ट अभिक्रिया के लिए वेग नियम दिया गया है : वेग = $k[A][B]^2$.

यदि हम B की सांद्रता को दुगुना कर दें, तो अभिक्रिया वेग किस प्रकार प्रभावित होगा ? सही विकल्प का चयन कीजिए :

(a) दुगुना

(b) चार गुना

(c) तीन गुना

(d) आधा $\left(\frac{1}{2}\right)$ हो जाता है

5. एक गैल्वैनी सेल, वैद्युत-अपघटनी सेल के समान कार्य कर सकती है जब :

(a) $E_{\hat{H}\hat{e}} = E_{\text{qigi}}$

(b) $E_{\text{the}} > E_{\text{alg}}$

(c) $E_{He} = 0$

(d) $E_{\text{बाह}l} > E_{\dot{H} \cap l}$

6. क्षारीय माध्यम में आयोडाइड आयन से उत्प्रेरित हाइड्रोजन परऑक्साइड के अपघटन की अभिक्रिया नीचे दी गई है:

$$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$$

उपर्युक्त अभिक्रिया दो पदों में सम्पन्न होती है :

पद
$$I: H_2O_2 + I^- \longrightarrow H_2O + IO^-(\dot{\pi}\varsigma)$$

पद
$$II: H_2O_2 + IO^- \longrightarrow H_2O + I^- + O_2$$

पद I और पद II की आण्विकता है :

- (a) $\forall x \in I 2, \forall x \in II 2$
- (c) $\mbox{ } \mbox{ } \mbox{$
- (d) पद I − 3, पद II − 1

56/C/2

- **3.** Pentan-2-one and Pentan-3-one can be distinguished by :
 - (a) Fehling's test
 - (b) Sodium bicarbonate test
 - (c) Tollens' test
 - (d) Iodoform test
- 4. The rate law for a particular reaction is given as rate = $k[A][B]^2$. How is the rate of reaction affected if we double the concentration of B? Choose the correct option:
 - (a) two times

(b) four times

(c) three times

- (d) becomes half $\left(\frac{1}{2}\right)$
- **5.** A galvanic cell can behave as an electrolytic cell when:
 - (a) $E_{cell} = E_{ext}$

(b) $E_{cell} > E_{ext}$

(c) $E_{cell} = 0$

- (d) $E_{ext} > E_{cell}$
- **6.** Given below is the decomposition of hydrogen peroxide in alkaline medium, which is catalysed by iodide ions:

$$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$$

The above reaction takes place in two steps:

$${\rm Step}\; {\rm I}: {\rm H_2O_2} + {\rm I}^- \longrightarrow {\rm H_2O} + {\rm IO}^- ({\rm slow})$$

Step II :
$$H_2O_2 + IO^- \longrightarrow H_2O + I^- + O_2$$

Molecularity of Step I and Step II is:

- (a) Step I 2, Step II 2
- (b) Step I 1, Step II 2
- $(c) \qquad Step\ I-2,\ Step\ II-1$
- (d) Step I 3, Step II 1

56/C/2

5

7. नीचे तीन यौगिक दिए गए हैं :

 $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$

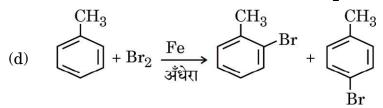
Ι

II

III

उनकी जलीय विलयन में क्षारकीय सामर्थ्य का सही घटता हुआ क्रम है:

(a) II > III > I


(b) III > II > I

(c) I > II > III

- (d) I > III > II
- 8. दिए गए संकुल $[Pt(NH_3)_2Cl_2]$ द्वारा किस प्रकार की समावयवता दर्शाई जाती है ?
 - (a) ध्रुवण समावयवता
- (b) ज्यामितीय समावयवता
- (c) आयनन समावयवता
- (d) उपसहसंयोजन समावयवता
- 9. निम्नलिखित अभिक्रियाओं में से कौन-सी हैलोजन विनिमय अभिक्रिया है ?

(a) $>C = C < + HX \longrightarrow >C - C < | | | | H X$

- (b) $R X + NaI \xrightarrow{\overline{y} \text{van } \overline{v} + R I + NaX}$
- (c) $R OH + HCl \xrightarrow{ZnCl_2} R Cl + H_2O$

- 10. उस यौगिक का चयन कीजिए जो फ़ीनॉल की अपेक्षा अधिक अम्लीय है :
 - (a) o-नाइट्रोफ़ीनॉल

(b) एथेनॉल

(c) o-मेथिलफ़ीनॉल

- (d) o-मेथॉक्सीफ़ीनॉल
- 11. सभी लैन्थेनॉयडों की सर्वाधिक सामान्य ऑक्सीकरण अवस्था है:
 - (a) + 5

(b) +2

(c) + 3

- (d) + 4
- 12. शून्य कोटि अभिक्रिया के लिए वेग स्थिरांक की इकाई है:
 - (a) s^{-1}

(b) $\text{mol}^{-1} L s^{-1}$

(c) $\text{mol}^{-2} L^2 s^{-1}$

(d) $\mod L^{-1} s^{-1}$

56/C/2

7. Three compounds are given below:	7.	Three co	ompounds	are	given	below	:
--	-----------	----------	----------	-----	-------	-------	---

 $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$

Ι III

The correct decreasing order of their basic strength in an aqueous solution is:

(a) II > III > I (b) III > II > I

I > II > III(c)

I > III > II(d)

8. Which type of isomerism is exhibited by the given complex? $[Pt(NH_3)_2Cl_2]$

- (a) Optical isomerism
- (b) Geometrical isomerism
- Ionisation isomerism (c)
- Coordination isomerism (d)

9. Which of the following reactions is a halogenated exchange reaction:

(b)
$$R - X + NaI \xrightarrow{Dry \ acetone} R - I + NaX$$

(c) $R - OH + HCI \xrightarrow{ZnCl_2} R - Cl + H_2O$
 $CH_3 \xrightarrow{CH_3} Br$
(d) $ER - CH_3 \xrightarrow{CH_3} Br$

- **10.** Choose the compound which is more acidic than phenol:
 - (a) o-nitrophenol

- (b) ethanol
- (c) o-methylphenol
- (d) o-methoxyphenol

11. The most common oxidation state for all lanthanoids is:

(a) + 5

+ 2 (b)

(c) + 3 (d) +4

12. Unit of rate constant for the zero order reaction is:

(a)

 $mol^{-1} L s^{-1}$ (b)

 $\text{mol}^{-2} \, \text{L}^2 \, \text{s}^{-1}$

(d) $\text{mol } L^{-1} s^{-1}$

56/C/2

13. दी गई अभिक्रिया का मुख्य उत्पाद क्या होगा ?

$$H \subset C = O + CH_3MgI \xrightarrow{H_2O}$$

- (a) एथेनेल
- (b) प्रोपेनॉल
- (c) एथेनॉल
- (d) प्रोपेनेल
- 14. हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया निम्नलिखित में से किसके द्वारा दी जाती है ?

(a)
$$NO_2$$

(c)
$$CH_3 - C = N$$

$$\begin{array}{ccc} & & & & O \\ & & & & \parallel \\ \text{(d)} & & \text{CH}_3 - \text{CH}_2 - \text{C} - \text{NH}_2 \end{array}$$

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए ।

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

56/C/2

13. What would be the major product of the given reaction?

$$_{\mathrm{H}}^{\mathrm{C}}$$
C = O + CH₃MgI $\xrightarrow{\mathrm{H}_{2}\mathrm{O}}$

- (a) Ethanal
- (b) Propanol
- (c) Ethanol
- (d) Propanal
- **14.** Hoffmann Bromamide Degradation reaction is given by :

(a)
$$\bigcup_{C}^{NO_2}$$
 \bigcup_{C}^{O} $\bigcup_{C}^{NO_2}$

(c)
$$CH_3 - C \equiv N$$

$$\begin{array}{ccc} & & & \text{O} \\ & & \text{II} \\ \text{(d)} & & \text{CH}_3 - \text{CH}_2 - \text{C} - \text{NH}_2 \end{array}$$

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- $(d) \qquad Assertion\ (A)\ is\ false,\ but\ Reason\ (R)\ is\ true.$

56/C/2

अभिकथन (A): बेन्ज़ीन डाइऐज़ोनियम लवण स्थायी होता है और इसे आसानी से भंडारित **15.** किया जा सकता है।

बेन्ज़ीन डाइऐज़ोनियम क्लोराइड आसानी से अपघटित हो जाता है । कारण (R) :

अभिकथन (A): सभी मोनोसैकेराइडें अपचायी शर्कराएँ होती हैं। **16.**

> वे फेलिंग विलयन और टॉलेंस अभिकर्मक को अपचयित कर देती है। कारण (R):

अभिकथन (A) : फ़ीनॉल, सांद्र HNO_3 और सांद्र $\mathrm{H}_2\mathrm{SO}_4$ के साथ अभिक्रियित किए जाने 17. पर 2,4,6-ट्राइनाइट्रोफ़ीनॉल देती है।

फ़ीनॉल में - OH समूह m-निर्देशक होता है । कारण (R) :

अभिकथन (A): Zn, Cd और Hg संक्रमण तत्त्व नहीं माने जाते हैं। 18.

> कारण (R) : Zn, Cd और Hg की मूल अवस्था अथवा उनकी किसी भी एक सामान्य ऑक्सीकरण अवस्था में d-कक्षक आंशिक भरित नहीं होते हैं।

खण्ड ख

- 1-क्लोरो-4-एथिलसाइक्लोहेक्सेन की संरचना लिखिए। (i) 19. (a)
 - ऐल्कोहॉलों की KI के साथ अभिक्रियाओं के दौरान सल्फ्यूरिक अम्ल प्रयुक्त (ii) क्यों नहीं किया जाता है ?

अथवा

- निम्नलिखित को उनके क्वथनांकों के आरोही क्रम में व्यवस्थित कीजिए : (b) (i) 1-क्लोरोप्रोपेन, 2-क्लोरोप्रोपेन, 1-क्लोरोब्यूटेन
 - उभदंती नाभिकरागी क्या है ? एक उदाहरण दीजिए । (ii)
- ताप में 293 K से 313 K तक वृद्धि करने पर किसी अभिक्रिया का वेग चार गुना हो जाता 20. है। इस अभिक्रिया के लिए सक्रियण ऊर्जा की गणना यह मानते हुए कीजिए कि इसका मान ताप के साथ परिवर्तित नहीं होता ।

10

 $(\log\,2 = 0.30,\ \log\,4 = 0.60)\ [R = 8.314\ J\ K^{-1}\ mol^{-1}]$

56/C/2

2

2

15. Assertion (A): Benzene diazonium salt is stable and can be easily stored.

Reason (R): Benzene diazonium chloride decomposes easily.

16. Assertion (A): All monosaccharides are reducing sugars.

Reason (R): They reduce Fehling's and Tollens' reagent.

17. Assertion (A): Phenol gives 2,4,6-trinitrophenol on treatment with concentrated HNO₃ and concentrated H₂SO₄.

Reason (R): - OH group in phenol is m-directing.

18. Assertion (A): Zn, Cd and Hg are not regarded as transition elements.

Reason (R): Zn, Cd and Hg do not have partially filled d-orbitals in their ground state or in any one of their common oxidation states.

SECTION B

- **19.** (a) (i) Write the structure of 1-chloro-4-ethylcyclohexane.
 - (ii) Why is sulphuric acid not used during the reactions of alcohols with KI?

 \mathbf{OR}

(b) (i) Arrange the following in increasing order of their boiling points:

1-chloropropane, 2-chloropropane, 1-chlorobutane

- (ii) What is an ambident nucleophile? Give one example.
- 20. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction, assuming that it does not change with temperature.

 $(\log 2 = 0.30, \log 4 = 0.60) [R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$

56/C/2

11

P.T.O.

2

2

21.	(a)			_		DNA और I	RNA दोनों में स	मान हैं ।	
		(ii)		टामिन की कमी					
		((1)	बच्चों में अस्थि	विकृतता				
		((2)	प्रणाशी रक्ताल्प	ता (Pernicio	ous anaemia	a)		2
				अथवा					
	(b)	(i)	ऐमीनो उ	मम्ल उभयधर्मी	प्रकृति क्यों दः	र्शाते हैं ?			
			क्या होत किया ज		ग्लूकोस को	हाइड्रॉक्सिलऐम	गिन के साथ अ	ाभिक्रियित	2
22.	दिए गए	Ŭ		यू.पी.ए.सी. नाम	म लिखिए :				
		[Co(NF							2
	इस सबु	per 4 Co) का ।द्वर -	नीयक संयोजक	ताक्याह?				2
23.	(a)	शुष्क सेव	ल की अ	गपेक्षा मर्क्यूरी से	ाल क्यों बेहतर	होता है ?			
	(b)	अन्य सेत	लों की उ	भपेक्षा ईंधन सेर	त को वरीयता	क्यों दी जाती	है ?		2
24.	(a)	प्रथम क संबंध लि		अभिक्रिया के	लिए वेग स्थि	गरांक और अ	र्ध-आयु के मध्य	ा गणितीय	
	(b)	संघट्ट अ	ावृत्ति क्र	ग्रा है ?					2
25.	(a)	CH ₃ CC	OOH र्व	ते तुलना में F-	CH ₂ COOH	प्रबलतर अम्ल	न क्यों है ?		
	(b)	वोल्फ-वि	केश्नर अ	पचयन के लिए	ए रासायनिक स	ामीकरण लिखि	ब्रए।		2
					खण्ड ग				
26.	निम्नलि	खित के ी	लिए रास्	गयनिक समीकर	एण लिखिए :			1 +2	1+1
	(a)	क्रोमिक	ऐनहाइड्र	াइड (CrO ₃) হ	द्वारा कीटोन में	द्वितीयक ऐल्क	नोहॉल का ऑक्स	त्रीकरण ।	
	(b)	ऐनिसोल	की सांद्र	द्र सल्फ्यूरिक अ	ाम्ल और नाई	ट्रेक अम्ल के	मिश्रण के साथ	अभिक्रिया ।	
	(c)	HI की	1-प्रोपॉक	सीप्रोपेन के सा	थ अभिक्रिया	l			
56/C/2	2				<u>12</u>		回货回 16年2月 回货票		

21.	(a)	(i)	Name RNA.	any two ba	ses which	ch are commo	on to	both DNA	A and
		(ii)	Which	vitamin def	ficiency c	auses:			
		` /	(1)	Bone deform	•				
				Pernicious a					2
				OR					
	(b)	(i)	Why d		ds show a	amphoteric be	ehavi	our ?	
	(,0)	(ii)			when	D-Glucose			with
		(11)	What hydrox	happens xylamine?	wnen	D-Glucose	is	treated	2
22.	Write	IUPA	C name	e of the giver	n comple	x:			
		[Co(N	$(\mathrm{H_3})_5\mathrm{Cl}$	Cl_2					
	What	is the	second	arv valency	of Co in 1	this complex ?)		2
				<i>y</i>		-			
23.	(a)	Why i	is merc	ury cell bett	er than d	lry cell ?			
	(b)	Why i	is fuel o	ell preferred	d over otl	ner cells ?			2
24.	(a)			mathematic first order re		on between	rate	constant	and
	(b)	What	is colli	sion frequen	cy?				2
25.	(a)	Why i	is F–CI	Н ₂ СООН а s	tronger a	acid than CH ₅	COO	Н?	
	(b)	Write	the ch	emical equa	tion for V	Volff-Kishner	redu	ction.	2
	(,2)			· 1					_
				S	ECTION	N C			
26.	Write	the ch	emical	equation for	r the follo	owing:			1+1+1
	(a)	Oxida (CrO ₃		f secondary	alcohol	to ketone b	y ch	romic anl	nydride
	(b)		ion of a		a mixtu	re of concent	rated	l sulphurio	c acid
	(c)	React	ion of I	II with 1-pro	opoxypro	pane.			
56/C/2	2				13	>	<u> </u>	8 5 8 8 5 8 9 8 7 8 8	P.T.O.

- **27.** (a) (i) तृतीयक ऐल्किल हैलाइडें $S_N 1$ अभिक्रिया तीव्र वेग से क्यों देते हैं ?
 - (ii) प्रतिबिंब रूप (एनेन्टियोमर) को परिभाषित कीजिए ।
 - (iii) क्लोरोफॉर्म को गहरे रंग की वायुरुद्ध बोतलों में क्यों रखा जाता है ? 1+1+1

अथवा

- (b) (i) 2-ब्रोमोपेन्टेन के विहाइड्रोहैलोजनन द्वारा निर्मित मुख्य ऐल्कीन लिखिए।
 - $m CH_3 = CH_3 CH_2 Br$ तथा $m CH_3 CH_3 CH_3 Br$ में से कौन $m S_N 2$ अभिक्रिया $m CH_3$

तीव्रता से देगा और क्यों ?

- (iii) नाभिकरागी प्रतिस्थापन अभिक्रिया के प्रति क्लोरोबेन्ज़ीन कम अभिक्रियाशील क्यों है ? $1 + (\frac{1}{2} + \frac{1}{2}) + 1$
- 28. (a) यह मानते हुए कि यह पूर्णत: वियोजित हो गया है, जलीय KCl के लिए वान्ट हॉफ गुणांक ज्ञात कीजिए।
 - (b) किसी कार्बनिक यौगिक के $68\cdot4$ g को 1000 g जल में घोलकर एक विलयन बनाया गया है । यौगिक के मोलर द्रव्यमान का परिकलन कीजिए जब क्वथनांक का उन्नयन $0\cdot104$ K और जल के लिए K_b $0\cdot52$ K kg mol^{-1} है ।
- 29. निम्नलिखित प्रश्नों में से किन्हीं तीन के उत्तर दीजिए:

1+1+1

3

निम्न के लिए कारण दीजिए:

- (a) एनिलीन के ऑर्थो और पैरा यौगिक निर्मित करने से पहले $-NH_2$ समूह का ऐसिलन किया जाता है।
- (b) ऐमीनों के मोलर द्रव्यमान बढ़ने के साथ ऐमीनों की जल में विलेयता घटती है।
- (c) ऐनिलीन फ्रीडेल-क्राफ्ट्स अभिक्रिया नहीं देती है।
- (d) तृतीयक ऐमीनों की तुलना में प्राथमिक ऐमीनों के क्वथनांक उच्चतर होते हैं।

56/C/2

- **27.** (a) (i) Why do tertiary alkyl halides undergo $S_N \mathbf{1}$ reaction at a faster rate ?
 - (ii) Define Enantiomers.
 - (iii) Why is chloroform stored in dark coloured air tight bottles? 1+1+1

OR

- (b) (i) Write the major alkene that would be formed by dehydrohalogenation of 2-Bromopentane.
 - (ii) Which would undergo S_N2 reaction at a faster rate and why?

$$\rm CH_3-CH_2-Br$$
 and $\rm CH_3-C-Br$ $\rm CH_3$

- (iii) Why is chlorobenzene less reactive towards nucleophilic substitution reaction ? $1+(\frac{1}{2}+\frac{1}{2})+1$
- **28.** (a) Find the van't Hoff factor for aqueous KCl, assuming complete dissociation.
 - (b) A solution of an organic compound is prepared by dissolving 68.4 g in 1000 g of water. Calculate the molar mass of the compound when elevation in boiling point is 0.104 K and K_b for water is $0.52 \text{ K} \text{ kg mol}^{-1}$.
- **29.** Answer any *three* of the following questions : 1+1+1 Give reasons for the following :
 - (a) Acylation of $-NH_2$ group is done in aniline before preparing its ortho and para compounds.
 - (b) Solubility of amines decreases with increase in molar mass of amines.
 - (c) Aniline does not undergo Friedel-Crafts reaction.
 - (d) Primary amines have higher boiling points than tertiary amines.

-___

30. संयोजकता आबंध सिद्धांत को प्रयुक्त करते हुए प्रागुक्ति कीजिए :

1+1+1

- (a) संकुल $[Co(NH_3)_6]^{3+}$ के केन्द्रीय धातु परमाणु का संकरण ।
- (b) इसकी आकृति और चुम्बकीय व्यवहार ।
- (c) यह उच्च प्रचक्रण संकुल है अथवा निम्न प्रचक्रण संकुल । [परमाणु क्रमांक : Co = 27]

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए :

वाष्पशील द्रवों के लिए राउल्ट के नियमानुसार प्रत्येक घटक का आंशिक वाष्प दाब विलयन 31. में उसके मोल-अंश के समानुपाती होता है, जबकि अवाष्पशील विलेय के लिए विलयन का वाष्प दाब उस ताप पर शुद्ध विलायक के वाष्प दाब तथा मोल अंश के गुणनफल के बराबर होता है। A और B दो द्रवों को मिलाए जाने पर बने विलयन में, विलयन की वाष्प प्रावस्था दोनों घटकों से मिलकर बनती है। जब विलयन में प्रत्येक घटक साम्यावस्था प्राप्त कर लेते हैं, तो कुल वाष्प दाब का निर्धारण राउल्ट नियम और डाल्टन के आंशिक दाब के नियम को मिलाकर किया जा सकता है। यदि विलायक A में कोई अवाष्पशील विलेय B को घोलकर विलयन बनाया जाए, तो शुद्ध विलायक की अपेक्षा विलयन का वाष्प दाब निम्नतर होगा । ऐसे विलयन जो सभी सांद्रताओं पर राउल्ट नियम का पालन करते हैं, आदर्श विलयन कहलाते हैं, जबिक ऐसे विलयन जिनका वाष्प दाब राउल्ट के नियम द्वारा प्रागुक्त किए गए वाष्प दाब से या तो अधिक होता है या कम होता है, अनादर्श विलयन कहलाते हैं। किसी विशेष विलयन में विभिन्न अणुओं के मध्य अंतरा-आण्विक बलों के सामर्थ्य निर्धारण द्वारा अनादर्श विलयनों की पहचान की जाती है। वे या तो राउल्ट के नियम से धनात्मक अथवा ऋणात्मक विचलन दर्शा सकते हैं, जो निर्भर करता है कि विलयन में A - A और B - B अन्योन्यक्रियाओं की अपेक्षा A - B अन्योन्यक्रियाएँ प्रबलतर हैं अथवा दुर्बल हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(a) द्रव A के 20~mL को द्रव B के 20~mL के साथ मिलाया गया । परिणामी विलयन का आयतन 40~mL से कम पाया गया । उपर्युक्त आँकड़ों से आप क्या निष्कर्ष निकालते हैं ?

56/C/2

30. Using valence bond theory, predict :

1+1+1

- (a) Hybridisation of central metal atom of the complex $[Co(NH_3)_6]^{3+}$.
- (b) Its shape and magnetic behaviour.
- (c) Whether it is a high spin or a low spin complex.

[Atomic number : Co = 27]

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow:

31. Raoult's law for volatile liquids states that the partial vapour pressure of each component in the solution is directly proportional to its mole fraction, whereas for a non-volatile solute, it states that the vapour pressure of a solution of a non-volatile solute is equal to the vapour pressure of the pure solvent at that temperature multiplied by its mole fraction. Two liquids A and B are mixed with each other to form a solution, the vapour phase consists of both components of the solution. Once the components in the solution have reached equilibrium, the total vapour pressure of the solution can be determined by combining Raoult's law with Dalton's law of partial pressures. If a non-volatile solute B is dissolved into a solvent A to form a solution, the vapour pressure of the solution will be lower than that of the pure solvent. The solutions which obey Raoult's law over the entire range of concentration are ideal solutions, whereas the solutions for which vapour pressure is either higher or lower than that predicted by Raoult's law are called non-ideal solutions. Non-ideal solutions are identified by determining the strength of the intermolecular forces between the different molecules in that particular solution. They can either show positive or negative deviation from Raoult's law depending on whether the A – B interactions in solution are stronger or weaker than A - A and B - B interactions.

Answer the following questions:

(a) 20 mL of a liquid A was mixed with 20 mL of liquid B. The volume of resulting solution was found to be less than 40 mL. What do you conclude from the above data?

56/C/2

17

回数回 (2003)

- (b) निम्नलिखित में से कौन राउल्ट नियम से धनात्मक विचलन दर्शाते हैं ? कार्बन डाइसल्फाइड और ऐसीटोन; फ़ीनॉल और ऐनिलीन; एथेनॉल और ऐसीटोन
- (c) 100°C पर ग्लूकोस के जल में विलयन का वाष्प दाब 750 mm Hg है। विलेय के मोल अंश का परिकलन कीजिए।

(373 K पर जल का वाष्प दाब = 760 mm Hg)

अथवा

- (c) जब 1 लीटर जल में NaCl का 1 मोल मिलाया जाता है, तो विलयन का क्वथनांक बढ़ जाता है जबिक एक लीटर जल में मेथेनॉल का 1 मोल मिलाये जाने पर इसका क्वथनांक घट जाता है। उपर्युक्त प्रेक्षणों की व्याख्या कीजिए। 1+1+2
- 32. कार्बोहाइड्रेट सभी जीवित प्राणियों के मुख्य घटक होते हैं । शर्कराएँ कार्बोहाइड्रेट होती हैं । मोनोसैकैराइडं और डाइसैकैराइडं मुख्य प्रकार की शर्कराएँ होती हैं । मोनोसैकैराइड, डाइसैकैराइड और पॉलिसैकैराइडों में मुख्य अंतर यह है कि मोनोसैकैराइड शर्करा का एक एकलक होती है और डाइसैकैराइडें दो मोनोमरों से मिलकर बनी होती हैं, जबिक पॉलिसैकैराइडें बड़ी संख्या के एकलकों से मिलकर बनी होती हैं । मोनोसैकैराइडें एकल शर्करा के अणु हैं जो डाइसैकैराइडों और पॉलिसैकैराइडों की आधारभूत इकाइयों की तरह कार्य करती हैं । डाइसैकैराइडें भी साधारण शर्कराएँ हैं । डाइसैकैराइडों को उनकी अपचायक सामर्थ्य के अनुसार दो वर्गों में वर्गीकृत किया जा सकता है : अपचायी और अनपचायी शर्कराएँ । संघनन अभिक्रिया के द्वारा जब एकलक से बहुलक का निर्माण होता है, तो ग्लाइकोसाइडी आबंध का निर्माण होता है और जल का अणु मुक्त होता है । स्टार्च, ग्लाइकोजन और सेलुलोस पॉलिसैकैराइडों के उदाहरण हैं । स्टार्च पादप कोशिकाओं के विभिन्न भागों में पाया जाता है और ऐमिलोस तथा ऐमिलोपेक्टिन से मिलकर बना होता है । मानवों में ग्लाइकोजन मुख्य कार्बोहाइड्रेट भंडारित उत्पाद के रूप में पाया जाता है । यह यकृत, मांसपेशियों तथा मस्तिष्क में उपस्थित होता है ।

सेलुलोस पृथ्वी पर सर्वाधिक प्रचुरता से उपलब्ध कार्बनिक अणु है । यह लगभग सभी कार्बनिक कार्बन का 50% होता है ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (a) उस बंध का नाम लिखिए जो पॉलिसैकैराइडों में मोनोसैकैराइड इकाइयों को जोड़ता है।
- (b) कार्बोहाइड्रेटों को उनके जल-अपघटन के व्यवहार के आधार पर वर्गीकृत किया जाता है। सूक्रोस के जल-अपघटन के उत्पाद लिखिए।

56/C/2

- (b) Which of the following show positive deviation from Raoult's law?

 Carbon disulphide and Acetone; Phenol and Aniline; Ethanol and Acetone
- (c) The vapour pressure of a solution of glucose in water is 750 mm Hg at 100°C. Calculate the mole fraction of solute.
 (Vapour pressure of water at 373 K = 760 mm Hg)

OR

- (c) The boiling point of solution increases when 1 mol of NaCl is added to 1 litre of water while addition of 1 mol of methanol to one litre of water decreases its boiling point. Explain the above observations. 1+1+2
- **32.** Carbohydrates are the major components of all living organisms. Sugars are carbohydrates. The major types of sugars include monosaccharides and disaccharides. The main difference between monosaccharides, disaccharides and polysaccharides is that monosaccharides are monomer of sugars and disaccharides are composed of two monomers, whereas polysaccharides are composed of a large number of monomers. Monosaccharides are single sugar molecules which act as the building blocks of disaccharides and polysaccharides. Disaccharides are also simple sugars. Disaccharides are classified into two groups according to their reducing strength: Reducing and Non-reducing sugars. When a polymer is formed from a monomer, a condensation reaction occurs that forms a glycosidic bond and water molecule is lost. Starch, glycogen and cellulose are examples of polysaccharides. Starch is found in many parts of plant cell and consists of amylose and amylopectin. Glycogen is the major carbohydrate storage product found in humans. It is present in liver, muscles and brain.

Cellulose is the most abundant organic molecule on Earth. It makes up around 50% of all organic carbon.

Answer the following questions:

- (a) Name the linkage which connects monosaccharide units in polysaccharides.
- (b) Carbohydrates are classified on the basis of their behaviour on hydrolysis. Write the hydrolysis products of sucrose.

56/C/2

>

(c) ऐमिलोस और ऐमिलोपेक्टिन के मध्य दो अंतर लिखिए।

अथवा

- (c) (i) अपचायी शर्कराएँ क्या होती हैं ?
 - (ii) सूक्रोस दक्षिण ध्रुवण-घूर्णक होती है लेकिन जल-अपघटन के उपरान्त प्राप्त मिश्रण वायु ध्रुवण-घूर्णक होता है। क्यों ? 1+1+2

खण्ड ङ

33. (a) यौगिक A रोज़ेनमुंड अपचयन द्वारा यौगिक B देता है जिसका आण्विक सूत्र C_7H_6O है । यौगिक B फेलिंग परीक्षण नहीं देता है लेकिन सांद्र NaOH के साथ अभिक्रिया करके यौगिक C और D देता है ।

A, B, C और D की पहचान कीजिए और समस्त सम्मिलित अभिक्रियाएँ लिखिए। यौगिक B और प्रोपेनोन के मध्य विभेद करने के लिए एक रासायनिक परीक्षण लिखिए।

अथवा

(b) यौगिक A जिसका आण्विक सूत्र (C_2H_6O) है, PCC द्वारा ऑक्सीकरण से यौगिक B देता है, जो तनु क्षार से अभिक्रियित होकर यौगिक C निर्मित करता है जो कि एक β -हाइड्रॉक्सी ऐल्डिहाइड है । B पोटैशियम परमैंगनेट द्वारा ऑक्सीकृत होकर C निर्मित करता है । A, B, C और D को पहचानिए तथा समस्त सम्मिलित रासायनिक समीकरण लिखिए ।

34. निम्नलिखित प्रश्नों के उत्तर दीजिए:

1+1+1+1+1

5

5

- (a) लैंथेनॉयडों की तुलना में ऐक्टिनॉयडों की रसायन अधिक जटिल होती है। क्यों ?
- (b) Mn^{3+}/Mn^{2+} रेडॉक्स युग्म के लिए E° का मान अधिक धनात्मक क्यों होता है ?
- (c) संक्रमण धातुएँ बड़ी संख्या में संकुल यौगिक क्यों निर्मित करती हैं ?
- (d) अम्लीकृत पोटैशियम परमैंगनेट विलयन कैसे ${
 m Fe}^{2+}$ आयनों से अभिक्रिया करता है ? आयनिक समीकरण लिखिए।
- (e) जलीय विलयन में धातु M के द्विसंयोजी आयन के लिए 'प्रचक्रण-मात्र' चुंबकीय आधूर्ण की गणना कीजिए। धातु M का परमाणु क्रमांक 25 है।

56/C/2

(c) Write two differences between Amylose and Amylopectin.

OR.

- (c) (i) What are reducing sugars?
 - (ii) Sucrose is dextrorotatory but the mixture obtained after hydrolysis is laevorotatory. Why? 1+1+2

SECTION E

33. Compound A undergoes Rosenmund reduction to give compound B (a) with molecular formula C₇H₆O. Compound B does not give Fehling's test but reacts with conc. NaOH to give C and D.

> Identify A, B, C and D and write all the reactions involved. Write one chemical test to distinguish between compound B and propanone.

> > OR

(b) Compound A with molecular formula (C₂H₆O) on oxidation by PCC gives compound B, which on treatment with dilute alkali forms compound C which is a β-hydroxy aldehyde. B on oxidation by potassium permanganate forms C. Identify A, B, C and D and write all the chemical equations involved.

34. Answer the following questions: 1+1+1+1+1

5

5

- (a) The chemistry of the actinoids is more complex as compared to lanthanoids. Why?
- Why is E° for Mn^{3+}/Mn^{2+} redox couple more positive ? (b)
- Why do transition metals form large numbers of complex (c) compounds?
- How does acidified potassium permanganate solution react with (d) Fe²⁺ ions? Write ionic equation.
- Calculate the 'spin only' magnetic moment of a divalent ion of a (e) metal M in aqueous solution. The atomic number of the metal M is 25.

56/C/2

- 35. (a) (i) सेल और उसका वि.वा. बल (emf) नीचे दिया गया है : $Pt (s) \, \big| \, H_2 (g, 1 \text{ bar}) \, \big| \, H^+ (aq, 1 \text{ M}) \, \big| \, Cu^{2+} (aq, 1 \text{M}) \, \big| \, Cu (s)$ सेल का वि.वा. बल (emf) = $+ \, 0.34 \, \text{V}$. कैथोड पर होने वाली अपचयन अर्ध-अभिक्रिया लिखिए ।
 - (ii) किसी अभिक्रिया के लिए मानक गिब्ज़ ऊर्जा, साम्य स्थिरांक से कैसे संबंधित है ?
 - (iii) दिए गए सेल का वि.वा. बल (emf) परिकलित कीजिए : $Mg(s) \left| Mg^{2+} (0\cdot 1\ M) \right| Cu^{2+} (1\cdot 0\times 10^{-3}\ M) \left| Cu(s) \right| \ 1+1+3$ दिया गया है : $E_{Cu^{2+}/Cu}^{\circ} = +0\cdot 34\ V, \quad E_{Mg^{2+}/Mg}^{\circ} = -2\cdot 37\ V$ (log 100=2)

अथवा

- (b) (i) आयनों के स्वतंत्र अभिगमन का कोलराऊश नियम लिखिए।
 - (ii) गलित ${
 m Al}_2{
 m O}_3$ से ${
 m 40~g~Al}$ उत्पादित करने के लिए फैराडे के पदों में विद्युत की कितनी मात्रा आवश्यक होगी ? (दिया गया है : ${
 m Al}$ का परमाण्विक द्रव्यमान = ${
 m 27~u}$)
 - (iii) $298~{
 m K}$ पर निम्नलिखित अभिक्रिया के लिए $\log{
 m K_c}$ परिकलित कीजिए :

CLICK HERE

 $\textbf{35.} \hspace{0.5cm} \textbf{(a)} \hspace{0.5cm} \textbf{(i)} \hspace{0.5cm} \textbf{A cell and its emf is given below:} \\$

$$Pt\left(s\right)\left|\,H_{2}\left(g,\,1\;bar\right)\,\right|H^{+}\left(aq,\,1\;M\right)\right\|Cu^{2+}\left(aq,\,\,1M\right)\left|\,Cu\left(s\right)\right.$$

emf of the cell = + 0.34 V.

Write the reduction half-reaction at cathode.

- (ii) How is standard Gibbs energy for a reaction related to equilibrium constant?
- (iii) Calculate emf of the given cell:

$$Mg(s) | Mg^{2+}(0.1 \text{ M}) | Cu^{2+}(1.0 \times 10^{-3} \text{ M}) | Cu(s)$$
 $1+1+3$

Given : $E_{Cu^{2+}/Cu}^{\circ} = +0.34 \text{ V}, \quad E_{Mg^{2+}/Mg}^{\circ} = -2.37 \text{ V}$

 $(\log 100 = 2)$

 \mathbf{OR}

- (b) (i) State Kohlrausch's law of independent migration of ions.
 - (ii) How much electricity in terms of Faraday is required to produce 40 g of Al from molten Al_2O_3 ?

(Given : atomic mass of Al = 27 u)

(iii) Calculate $log K_c$ for the following reaction at 298 K:

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \rightleftharpoons \operatorname{Zn}^{2+}(aq) + \operatorname{Cu}(s)$$
 1+1+3

Given : $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}, E_{Cu^{2+}/Cu}^{\circ} = +0.34 \text{ V}$

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)

Senior Secondary School Supplementary Examination, July- 2023
SUBJECT NAME: CHEMISTRY SUBJECT CODE: 043 PAPER CODE: 56/C/2

<u> </u>	trai motraotiono.
1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession. To
	avoid mistakes, it is requested that before starting evaluation, you must read and understand

- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.

General Instructions: -

the spot evaluation guidelines carefully.

12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
	day in other subjects (Details are given in Spot Guidelines).
13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past: - Giving more marks for an answer than assigned to it.
	Wrong totalling of marks awarded on an answer.
	 Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totalling on the title page.
	 Leaving answer or part thereof unassessed in an answer book.
	 Wrong totalling of marks of the two columns on the title page.
	Wrong grand total.
	 Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect
	answer.)
	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0) Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totalling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,
	it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
	spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
<u> </u>	the title page, correctly totalled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners
	are once again reminded that they must ensure that evaluation is carried out strictly as per
	value points for each answer as given in the Marking Scheme.

MARKING SCHEME

Senior Secondary School Supplementary Examination, July-2023 CHEMISTRY (Subject Code-043)

[Paper Code: 56/C/2]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(b)	1
2.	(b)	1
3.	(d)	1
4.	(b)	1
5.	(d)	1
6.	(a)	1
7.	(a)	1
8.	(b)	1
9	(b)	1
10.	(a)	1
11.	(c)	1
12.	(d)	1
13.	(c)	1
14.	(d)	1
15.	(d)	1
16.	(a)	1
17.	(c)	1
18.	(a)	1
10	SECTION-B	
19.	(a) (i)	
	CH ₂ CH ₃	1

	(ii) Sulphuric acid converts KI to HI and then oxidises HI to I ₂ .	1
	OR	
19.	(b) (i) 2-chloropropane < 1-chloropropane < 1-chlorobutane	1
	(ii) A nucleophile with two nucleophilic centres.	1/2
	CN^-/NO_2^- (or any other suitable example).	1/2
20.	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$	1/2
	$k_2 = 4 k_1$	
	$\log 4 = \frac{E_a}{2.303 \times 8.314} \left(\frac{313 - 293}{293 \times 313} \right)$	1
	$0.6021 = \frac{20 \times E_a}{2.303 \times 8.314 \times 293 \times 313}$	
	$E_a = \frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}$	
	$E_a = {20}$	1/2
	$E_a = 5.28 \times 10^4 \text{ J mol}^{-1} \text{ or } 52.8 \text{ kJ mol}^{-1}$	72
21.	(a) (i) Adenine, Guanine, Cytosine (any two)	$\frac{1}{2} + \frac{1}{2}$
	(ii) (1) Vitamin D	1/2
	$(2) \text{ Vitamin } B_{12}$	1/2
	OR	
21.	(b) (i) Due to the presence of both acidic (-COOH) and basic (-NH ₂) groups in the same molecule / they form zwitter ion which react with both acid and base. (ii)	1
	CHO CH=N-OH	
	$ \begin{array}{ccc} CHO & CH=N-OH \\ (CHOH)_4 & \stackrel{NH_1OH}{\longrightarrow} & (CHOH)_4 \\ CH_2OH & CH_2OH \end{array} $ (Clucose ovime is formed)	
	CH ₂ OH CH ₂ OH / Glucose oxime is formed.	1
22.	Pentaamminechloridocobalt(III)chloride	1
	Six /6	1
23.	(a) It provides constant voltage / steady voltage	1
	(b) Fuel cells are pollution-free / High efficiency / no recharging required (any one).	1
24.	(a) $t_{1/2} = \frac{0.693}{k}$	1
	(b) The number of collisions per second per unit volume of the reaction mixture.	1
25.	(a) F shows -I effect that stabilises the conjugate base (Fluoroacetate ion).	1
	(b)	
	$C=O \xrightarrow{NH_2NH_3} C=NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1
	(or any other suitable chemical reaction)	
	SECTION C	

26.	(a)	
	$R-CH-R' \xrightarrow{CrO_3} R-C-R'$	
	l II	1
	OH O	
	(b)	
	OCH ₃ OCH ₃ OCH ₃	
	H ₂ SO ₄	
	HNO ₃	1
	NO_2	
	(c) CH ₃ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃ + HI CH ₃ CH ₂ CH ₂ OH + CH ₃ CH ₂ CH ₂ I	1
27.	(a)	
	(i) Due to the stability of tertiary carbocation.	1
	(ii) Optically active isomers which are related to each other as non-superimposable	
	mirror images.	1
	(iii) Because chloroform is slowly oxidised by air in the presence of light to an extremely poisonous gas, carbonyl chloride (phosgene).	1
	OR	1
27.	(b) (i) Pent-2-ene / CH ₃ -CH=CHCH ₂ CH ₃	1
	(ii) CH ₃ CH ₂ Br, it is a primary alkyl halide.	$\frac{1}{2} + \frac{1}{2}$
	(iii) C–Cl bond acquires partial double bond character due to resonance.	1
	(or any other suitable reason)	
28.	(a) $i = 2$	1
	(b) $M = \frac{K_b X w_2 X 1000}{\Delta T_b X w_2}$	1/2
	$\Delta T_b X w_2$	
	$= \frac{0.52 \times 68.4 \times 1000}{0.104 \times 1000}$	1/2
	- 0.104 X 1000	
	$= 342 \text{ g mol}^{-1}$	1
29.	(a) Due to resonance electron density on nitrogen gets reduce and is less available	1
	for donation.	
	(b) The extent of hydrogen bonding with water is reduced due to an increase in the	
	size of the alkyl group.	1 0
	(c) Due to the salt formation with Lewis acid anhydrous AlCl ₃ .	1 x 3
	(d) Due to the presence of intermolecular hydrogen bonding in primary amines which is absent in tertiary amines.	
	(any three)	
30.	$(a) d^2sp^3$	1
	(b) Octahedral, diamagnetic	1/2 + 1/2
	(c) Low spin complex	1
	SECTION-D	
31.	(a) Solution shows a negative deviation from Raoult's law / A-A and B-B	1
	interactions are weaker than A-B interactions.	
	(b) Carbon disulphide and acetone, Ethanol and acetone.	1/2 + 1/2
	(c) According to Raoult's law:	
	$p_1 = p_1^0 x_1 \text{or} x_1 = \frac{p_1}{p_1^0}$	1/2
	p_1°	
	·	•

			1/2
	$x_1 = \frac{750}{760}$	= 0.087	72
	760	- 0.967	
	$X_2 = 1 - \lambda$	c_1	
	= 1- 0	.987 = 0.013	1
	1 0		
		(or any other suitable method)	
		when it is added to water the vapour pressure	
	decreases and hence boiling point is		1
		s addition to water increases the total vapour	
	pressure of the solution and hence	<u> </u>	1
32.	(a) Glycosidic linkage		1
	(b) D-(+)-Glucose and D-(-)-fructo	ose	$\frac{1}{2} + \frac{1}{2}$
	(c)		
	Amylose	Amylopectin	
	Soluble in water	Insoluble in water	1 x 2
	Linear long chain polymer	Branched chain polymer	
	Formation of the state of the s	(or any other two correct differences)	
		<u> </u>	
	()()0 1:1 1 5:1:	OR The Hand	1
	(c) (i) Sugars which reduce Fehling		1
		dextrorotatory glucose and laevorotatory fructose.	
	Hence, the mixture is laevorota	e is more than the dextrorotation of glucose.	1
		ION-E	1
	SECT	Ю-Е	
33.	(a) $A = Benzoyl chloride / C_6H_5C$	COCI	
	$B = Benzaldehyde / C_6H_5CH_0$		½ x 4
	C = Benzyl alcohol / C ₆ H ₅ CH		
	$D = Sodium Benzoate / C_6H_5$		
	O.		
	ا ہے ۔"	CHO	
	Cl H ₂	\rightarrow []	1
	Pd – BaSO ₄		1
	2 CHO + Conc. NaOH -	$\xrightarrow{\Delta}$ $\langle - \rangle$ \rightarrow CH ₂ OH + $\langle - \rangle$ \rightarrow COONa	
			1
	Benzaldehyde	Benzyl alcohol Sodium benzoate	
	_	the test tubes containing the given organic	
		ives +ve iodoform test i.e., CHI ₃ (yellow ppt.)	
	while benzaldehyde does not.	· · · · · · · · · · · · · · · · · · ·	1
	Ol	R	
33.	(a) A = Ethanol / CH ₃ CH ₂ OH		½ x 4
	$B = Ethanal / CH_3CHO$		
	$C = 3$ -Hydroxybutanal / CH_3	· · · ·	
	D = Ethanoic acid / CH ₃ COO	OH	

OTT
ОН
1 x 3
and the
ind the
exist in
Much larger
nation / High
1
1/2
1/2
1
1
1
1/2
1/2
ect unit)
as the sum of 1
as the sum of 1
1/2
4.44 F
72
1/2
1/2
1/2 1/2
/2
1
a control of the cont